Approximation of Ill-Posed Volterra Problems via Predictor-Corrector Regularization Methods

نویسنده

  • Patricia K. Lamm
چکیده

First-kind Volterra problems arise in numerous applications, from inverse problems in mathematical biology to inverse heat conduction problems. Unfortunately, such problems are also ill-posed due to lack of continuous dependence of solutions on data. Consequently, numerical methods to solve first-kind Volterra equations are only effective when regularizing features are built into the algorithms or used to control stepsize. Classical methods often combine numerical discretization with Tikhonov regularization, but in doing so the underlying Volterra (or causal) nature of the original problem is often destroyed. Instead, a “predictor-corrector” type of numerical method is proposed which combines at each step “local regularization” ideas with the use of small intervals of future data. The result is a regularized numerical method which retains much of the causal nature of the Volterra problem and may be solved in fast sequential steps, often improving upon the performance of classical algorithms such as those based on standard Tikhonov regularization. In this paper, the discretized local regularization method is described and proofs are given of convergence of the method, with rate of convergence being “best possible” with regard to the amount of error in the data. Further, by linking the regularization parameter of the stabilizing method (i.e., the length of the “future interval” in the future-sequential method) to the approximation stepsize, great simplification of the resulting numerical algorithm is obtained. Relevant numerical examples are included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full convergence of sequential local regularization methods for Volterra inverse problems

Local regularization methods for ill-posed linear Volterra equations have been shown to be efficient regularization procedures preserving the causal structure of the Volterra problem and allowing for sequential solution methods. However questions posed recently in Ring and Prix (2000 Inverse Problems 16 619–34) raise doubts as to whether such methods are convergent for problems which are more t...

متن کامل

Solution of Ill-Posed Volterra Equations via Variable-Smoothing Tikhonov Regularization

We consider a “local” Tikhonov regularization method for ill-posed Volterra problems. In addition to leading to efficient numerical schemes for inverse problems of this type, a feature of the method is that one may impose varying amounts of local smoothness on the solution, i.e., more regularization may be applied in some regions of the solution’s domain, and less in others. Here we present pro...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Future-Sequential Regularization Methods for Ill-Posed Volterra Equations ∗ Applications to the Inverse Heat Conduction Problem

We develop a theoretical context in which to study the future-sequential regularization method developed by J. V. Beck for the Inverse Heat Conduction Problem. In the process, we generalize Beck’s ideas and view that method as one in a large class of regularization methods in which the solution of an ill-posed first-kind Volterra equation is seen to be the limit of a sequence of solutions of we...

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 56  شماره 

صفحات  -

تاریخ انتشار 1996